Synthesis, Inhaltsverzeichnis Synthesis DOI: 10.1055/a-2735-9268 Paper Published as Part of the Special Issue In Honor of Prof. Franziska Schoenebeck, The 2025 Women in Chemistry Award Winner (E)-Selective Defluorinative Diphenothiazination of Trifluoromethyl Styrenes Autor*innen Institutsangaben Yun Yang 1 Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany (Ringgold ID: RIN9165) Ben Ebel 2 Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany Iris M. Oppel 2 Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany Frederic W. Patureau 1 Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany (Ringgold ID: RIN9165) Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Abstract Alpha-trifluoromethyl styrenes have become a versatile and valuable platform in order to access a wide variety of fluorinated organic motifs over recent years. This is due to their propensity to accommodate diverse defluorinative radical or nucleophilic attacks, which can lead to highly functionalized fluorinated alkenes. In some cases, such as described herein, E/Z selectivity issues can arise. While Zhu showed in 2021 that indole and carbazole nucleophiles lead preferentially to the (Z)-fluoroalkenes, we found that phenothiazines reverse the selectivity toward the (E)-configured diphenothiazinated fluoroalkenes. A scope and diastereoselectivity model for this unexpected reversal is discussed. Keywords KeywordsPhenothiazine - Trifluoromethyl styrene - Fluoroalkene - Defluorinative amination - E/Z selectivity Volltext Referenzen References Selected: 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev 2008; 37: 320 1b O’Hagan D. J Fluor Chem 2010; 131: 1071 1c Wang J, Sanchez-Rosello M, Acena JL. et al. Chem Rev 2014; 114: 2432 1d Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J Med Chem 2015; 58: 8315 1e Zhou Y, Wang J, Gu Z. et al. Chem Rev 2016; 116: 422 1f Meanwell NA. J Med Chem 2018; 61: 5822 Selected: 2a Chen P, Liu G. Eur J Org Chem 2015; 4295 2b Yang Y, Taponard A, Vantourout JC, Tlili A. ACS Org Inorg Au 2023; 3: 364 Selected: 3a Tian F, Yan G, Yu J. Chem Commun 2019; 55: 13486 3b Yan G, Qiu K, Guo M. Org Chem Front 2021; 8: 3915 3c Zhao F, Zhou W, Zuo Z. Adv Synth Catal 2022; 364: 234 3d Li S, Shu W. Chem Commun 2022; 58: 1066 3e Ge D, Chu X-Q. Org Chem Front 2022; 9: 2013 3f Hooker LV, Bandar JS. Angew Chem Int Ed 2023; 62: e202308880 3g Ling J, Zhou L. Chem Rec 2024; 24: e202300332 4a Zeng H, Cai Y, Jiang H, Zhu C. Org Lett 2021; 23: 66 See also: 4b Zeng H, Li H, Li C, Jiang H, Zhu C. Org Chem Front 2022; 9: 1383 4c Zeng H, Li H, Jiang H, Zhu C. Sci China Chem 2022; 65: 554 4d Peng R, Zhu C. J Org Chem 2025; 90: 1538 Selected: 5a Louillat-Habermeyer M-L, Jin R, Patureau FW. Angew Chem Int Ed 2015; 54: 4102 5b Jin R, Bub CL, Patureau FW. Org Lett 2018; 20: 2884 5c Patureau FW. ChemCatChem 2019; 11: 5227 5d Xiao F, Wang X, Ebel B, Oppel IM, Patureau FW. J Org Chem 2025; 90: 1180 Selected: 6a Ohlow MJ, Moosmann B. Drug Discovery Today 2011; 16: 119 6b Treat NJ, Sprafke H, Kramer JW. et al. J Am Chem Soc 2014; 136: 16096 6c Pan X, Lamson M, Yan J, Matyjaszewski K. ACS Macro Lett 2015; 4: 192 6d Pan X, Fang C, Fantin M. et al. J Am Chem Soc 2016; 138: 2411 6e Salunke JK, Wong FL, Feron K. et al. J Mater Chem C 2016; 4: 1009 6f Kumar S, Singh M, Jou J-H, Ghosh S. J Mater Chem C 2016; 4: 6769 6g Grisorio R, Roose B, Colella S, Listorti A, Suranna GP, Abate A. ACS Energy Lett 2017; 2: 1029 6h Li BX, Kim DK, Bloom S. et al. Nat Chem 2021; 13: 902 6i Girón-Elola C, Sasiain I, Sánchez-Fernández R, Pazos E, Correa A. Org Lett 2023; 25: 4383 6j Pérez-Cubero I, Andrade-Sampedro P, Sasiain I, Correa A. ACS Catal 2025; 15: 10320 Selected: 7a Okada K, Imakura T, Oda M, Murai H, Baumgarten M. J Am Chem Soc 1996; 118: 3047 7b Kim MS, Cho MJ, Choi YC. et al. Dyes Pigments 2013; 99: 986 7c Xu S, Liu T, Mu Y. et al. Angew Chem Int Ed 2015; 54: 874 7d Zhang Z, Gao Y, Liu H. et al. Dyes Pigments 2017; 145: 294 7e Wang B, Qiao X, Yang Z. et al. Org Electron 2018; 59: 32 7f Wu Q, Braveenth R, Zhang HQ, Bae I-J, Kim M, Chai KY. Molecules 2018; 23: 843 7g Liu X-Y, Tang X, Zhao D. et al. Org Electron 2018; 61: 70 7h Chen C, Lu H-Y, Wang Y-F, Li M, Shen Y-F, Chen C-F. J Mater Chem C 2019; 7: 4673 7i Li W, Huang Q, Yang Z. et al. Angew Chem Int Ed 2020; 59: 22645 7j Şahin Y, Çoban EP, Sevinçek R, Bıyık HH, Özgener H, Aygün M. Bioorg Chem 2021; 106: 104494 7k Zhang L, Wang Y-F, Li M, Gao Q-Y, Chen C-F. Chin Chem Lett 2021; 32: 740 7l Kikushima K, Koyama H, Kodama K, Dohi T. Molecules 2021; 26: 1365 7m Meti P, Lee H-S, Gong Y-D. Dyes Pigments 2022; 204: 110402 7n Zhao H, Wang X, Hu S, Liang M, Xue P. Cryst Growth Des 2024; 24: 7504 8a Liu Y, Zhou Y, Zhao Y, Qu J. Org Lett 2017; 19: 946 8b Ma T, Li X, Ping Y, Kong W. Chin J Chem 2022; 40: 2212 8c Qiu J, Wang C, Zhou L, Lou Y, Yang K, Song Q. Org Lett 2022; 24: 2446 8d Trost BM, Debien L. J Am Chem Soc 2015; 137: 11606 8e Wang X, Wang C, Bolm C. Org Lett 2022; 24: 7461 8f Yang J-W, Li M, Tan G-Q, Liu F, Qin H-T. Eur J Org Chem 2024; 27: e202400011 8g Zhu C, Sun M-M, Chen K, Liu H, Feng C. Angew Chem Int Ed 2021; 60: 20237 9 Stoe&Cie, 2024. https://www.stoe.com/ 10 Sheldrick GM. Acta Cryst A Found Adv 2015; 71: 3 11 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. J Appl Crystallogr 2009; 42: 339 12 Kleemiss F, Dolomanov OV, Bodensteiner M. et al. Chem Sci 2021; 12: 1675 13 Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. J Phys Chem Lett 2020; 11: 8208 14 Neese F, Wennmohs F, Becker U, Riplinger C. J Chem Phys 2020; 152: 224108 15 Neese F. WIREs Comput Mol Sci 2022; 12: e1606 16 Neese F. J Comput Chem 2003; 24: 1740 17 Neese F. J Comput Chem 2023; 44: 381 18 Lehtola S, Steigemann C, Oliveira MJT, Marques MAL. SoftwareX 2018; 7: 1 Zusatzmaterial Zusatzmaterial Ergänzendes Material (PDF) (opens in new window) Ergänzendes Material (PDF) (opens in new window)